J 2025

Accelerating Emergency Response in Airport Environments: An Experimental Study on Intelligent Sound Detection Systems

SMAŽINKA, Dalibor, Radomír ŠČUREK a Martin HRINKO

Základní údaje

Originální název

Accelerating Emergency Response in Airport Environments: An Experimental Study on Intelligent Sound Detection Systems

Autoři

SMAŽINKA, Dalibor (203 Česká republika, garant), Radomír ŠČUREK (203 Česká republika) a Martin HRINKO (203 Česká republika, domácí)

Vydání

International Journal of Safety and Security Engineering, 2025, 1258-5769

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

20104 Transport engineering

Stát vydavatele

Kanada

Utajení

není předmětem státního či obchodního tajemství

Organizační jednotka

CEVRO Univerzita

Klíčová slova anglicky

AI-driven security systems_airport security_crisis management-first responders reaction_multimodal detection_public safety and security_sound event detection systems
Změněno: 19. 6. 2025 10:48, doc. Ing. Martin Hrinko, Ph.D., MBA, LL.M.

Anotace

V originále

Reducing emergency response times is critical to enhancing the efficiency of integrated rescue systems (IRS) and mitigating the impact of crisis events. This study investigates the deployment of intelligent sound event detection (SED) systems capable of recognizing specific sounds, such as gunshots and shouting, within public and commercial spaces. Through controlled simulations in an airport administrative building, the research demonstrates that SED systems significantly outperform traditional notification methods, reducing average response times by over 97%—from 175 seconds to just 5 seconds. These findings highlight the potential of SED systems to revolutionize emergency response strategies. The study introduces a novel approach by integrating sound detection with video surveillance into multimodal systems. This combination enhances situational awareness and allows for more precise responses to emergencies, addressing limitations of standalone detection systems. However, the study acknowledges key limitations—primarily that SED systems are less effective in silent incidents. The results emphasize the scalability of SED systems for diverse real-world applications in critical locations such as public institutions, shopping centers, and transportation hubs, where rapid decision-making is essential. Future research should explore optimizing these systems for noisy and unpredictable environments and advancing machine learning algorithms to improve reliability, adaptability, and detection accuracy, ensuring robust crisis management in varied scenarios.